Journal of

The Chemical Society,

Chemical Communications

NUMBER 2/1975

15 JANUARY

Vicinal ¹³C–¹⁵N Coupling Constants in Peptides

By Rosario Di Blasi

(Laboratori Ricerche di Base, SNAM Progetti S.p.A., c.p. 15, 00015 Monterotondo, Roma, Italy)

and KENNETH D. KOPPLE*

(Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616)

Summary Vicinal ¹³C-¹⁵N coupling constants for three ¹⁵N-labelled peptide models having $C^{\beta}-C^{\alpha}-C^{16}N$ dihedral angles constrained to 110 or 160° are smaller than 1 Hz, which minimizes their potential utility in peptide conformation studies.

LICHTER et al.¹ have reported ¹³C–¹⁵N coupling constants for some saturated primary amides labelled with ¹⁵N, in which rotation about the C^{α}–C' bond is not obviously restricted. They were unable to observe three-bond couplings between ¹⁵N and ¹³C^{β}, and suggested that this might in part be the result of rotational averaging. The magnitude and dihedral angle dependence of the C^{β}–N three-bond coupling would be of interest as a possible indication of the dihedral angle ψ in peptide systems^{2,3} and is worth additional study. We report here related results, obtained from peptide systems with restricted ψ rotation, which confirm that the ¹⁵N–C'–C^{α}–C^{β} coupling is in fact very small.

Two diketopiperazines, cyclo-(Gly-Pro) and cyclo-(Gly-Phe), both 95% substituted with ¹⁵N in the glycine residue, were examined. The dipeptide ring of cyclo-(Gly-Pro) is constrained to a boat form in which the proline β carbon is quasi-equatorial. The ¹⁵N-C'-C^{α}-C^{β} angle may be estimated as *ca*. 155° by analogy with the structure of cyclo-(L-Pro-L-Leu) established by X-ray crystallography.⁴ The diketopiperazine ring of cyclo-(Gly-Phe) is also a boat, but with the phenylalanine β -carbon quasi-axial.⁵ The N-C'-

 C^{α} - C^{β} angle is probably close to that determined in X-ray studies of cyclo-(Gly-L-Tyr),⁶ ca. 110°.

¹³C n.m.r. spectra of these substances were measured with a Varian XL-100 instrument, equipped with a VFT-100 Fourier transform accessory, with noise decoupling. In neither of the diketopiperazines was splitting of the C^{β} line observed. An upper limit to the magnitude of the N-C^{β} coupling may be estimated from the linewidth data. For cyclo-(Gly-Pro) in water, the observed width of the C^{β} line was 1·2 Hz and the width of the C^{γ} line was 1·4 Hz. The width of the line from dioxan added to the sample was 1·0 Hz. For cyclo-(Gly-Phe) in methanol containing 40% hexafluoroacetone, 1·5D₂O the width of the C^{β} line was 2 Hz and that of added internal dioxan was 1·2 Hz.

We also examined, with similar results, N-acetylprolinamide bearing primary amide ¹⁵N. For that species of this substance with a trans Ac-Pro amide bond the conformation about C^{α} -C' in non-polar solvents is probably determined by an intramolecular hydrogen bond between primary amide N-H and acetyl C=O.⁷ The ¹⁵N-C'-C^{α}-C^{β} angle is thus held in a range near 160°; on the other hand, it is not so constrained in water.⁷ For AcPro ¹⁵NH₂ we observed the following widths at half-height: in CDCl₃ (0.5% CF₃CO₂H), C^{β} 1.5, C^{γ} 1.2, C^{Me} 1.2 Hz; in H₂O, C^{β} 0.9 C^{γ} 0.8, C^{Me} 1.0 Hz.

In these measurements the actual resolution attainable was limited to 0.5 Hz by the acquisition time, so that it appears that at a dihedral angle of 160° the magnitude of

 $J(^{15}NCC^{13}C)$ is $\langle ca. 0.5 \text{ Hz}, \text{ and that at } 110^{\circ} \text{ it is no}$ greater than ca. 1.0 Hz. It is not likely, therefore, that ¹⁵N-¹³C couplings will be of service in experimental determinations of the peptide conformational angle ψ .

This work was supported in part by grants from the U.S.A. National Institutes of Health.

(Received, 11th November 1974; Com. 1379.)

- ¹ R. L. Lichter, C. G. Fehder, P. H. Patton, J. Combes, and D. E. Dorman, J.C.S. Chem. Comm., 1974, 114.
 ² S. Karplus and M. Karplus, Proc. Nat. Acad. Sci. U.S.A., 1972, 69, 3204.
 ³ J. A. Sogn, W. A. Gibbons, and E. W. Randall, Biochemistry, 1972, 12, 2100.
 ⁴ I. L. Karle, J. Amer. Chem. Soc., 1972, 94, 81.
 ⁵ G. Gawne, G. W. Kenner, N. H. Rogers, R. C. Sheppard, and K. Titlestad, in E. Bricas, ed., "Peptides 1968" (Proc. 9th European Peptide Symposium, Orsay, 1968), North Holland Pbl. Co., Amsterdam, 1968, p. 28.
 ⁶ L. E. Webb and C. F. Lin, J. Amer. Chem. Soc., 1971, 93, 3818; 1973, 95, 6803.
 ⁷ V. Madison and I. Schellman, Biochymers, 1970, 9, 511.

 - ⁷ V. Madison and J. Schellman, Biopolymers, 1970, 9, 511.